Cancer

Cancer – nouvelles pistes

• Bookmarks: 471033


(Suite de la page Cancer - sources)

Sommaire

Un recadrage des priorités

Rosalind Franklin en 1955

James Dewey WatsonN1, lau­réat du Prix Nobel en 1962 et codé­cou­vreur avec Francis Crick de la struc­ture de l’ADN (sur la base du tra­vail déter­mi­nant mais scan­da­leu­se­ment passé sous silence de Rosalind FranklinN2) a défrayé la chro­nique en publiant dans The Lancet (février 2014N3) une hypo­thèse selon laquelle le dia­bète de type 2, les formes de démence, les mala­dies car­dio­vas­cu­laires et cer­tains can­cers seraient causés par l’in­ca­pa­cité de pro­duire suf­fi­sam­ment des déri­vés réac­tifs de l’oxy­gène (ROSN4) — aussi appe­lés « radi­caux libres ».

Il ajou­tait qu’une meilleure com­pré­hen­sion des effets béné­fiques de l'exercice physique de haute intensité (HIITN5) pour­rait contri­buer à soi­gner cette inca­pa­cité. Peter Tarr com­mente (voir pageN6) :

Il ne remet pas en ques­tion le fait que le tissu pan­créa­tiqueN7 est enflammé chez les patients du dia­bète de type 2N8. Mais il pro­pose une théo­rie expli­ca­tive nou­velle : « Je sug­gère que la cause prin­ci­pale est une défi­cience d’agents oxy­dantsN4 et non un excès. »

Watson rap­pelle que les cel­lules du corps ne peuvent pas sur­vivre sans fabri­quer à la fois des agents oxy­dants et anti­oxy­dants (voir articleN9). Il existe un équi­libre subtil entre les deux. L’exercice phy­sique (de haute inten­sité) oblige le corps à fabri­quer un grand nombre d’a­gents oxy­dants (ROSN4 ou « radi­caux libres »). Dans le réti­cu­lum endo­plas­miqueN10, une des espèces de ROS, le per­oxyde d’oxy­gène (H2O2) sert à créer des liens chi­miques (ponts disul­fureN11) sta­bi­li­sant les pro­téines lors­qu’elles se replientN12. Si l’oxy­da­tion est insuf­fi­sante, les pro­téines ne se replient pas et deviennent inac­tives. C’est, selon Watson, ce qui cause l’in­flam­ma­tion du pan­créas condui­sant au dia­bète de type 2N8. Il note que les ath­lètes qui absorbent une grande quan­tité d’an­ti­oxy­dants avant l’ef­fort auraient ten­dance à dimi­nuer son effet béné­fique. Cette pro­po­si­tion avait été véri­fiée par Ristow M et col­lègues (2009N13) — voir aussi la mito-hormèseN14 selon Ristow M & Schmeisser K (2014N15).

Dans son article Oxidants, antioxi­dants and the cur­rent incu­ra­bi­lity of metas­ta­tic can­cers (2013N16), James Watson déve­lop­pait le même type d’ar­gu­ment pour ce qui concerne le cancer.

Nous devrions nous concen­trer beau­coup, beau­coup plus, sur l’é­ven­tail très large de vul­né­ra­bi­li­tés méta­bo­liques et oxy­da­tives qui appa­raissent en consé­quence des capa­ci­tés incon­trô­lables de crois­sance et de pro­li­fé­ra­tion des cel­lules can­cé­reuses. Lorsque les can­cers humains dérivent vers des états gly­co­ly­tiques plus agres­sifs, leur stress méta­bo­lique en aug­men­ta­tion constante les rend par­ti­cu­liè­re­ment vul­né­rables à une baisse sou­daine de leurs four­ni­tures vitales d’éner­gie sous la forme d’ATPN17.

Les cel­lules tumo­rales d’o­ri­gine épi­thé­liale (car­ci­nomesN18) peuvent subir une tran­si­tion épithélio-mésenchymateuse (TEMN19) qui les rend inva­sives et consti­tue une des pre­mières étapes vers la for­ma­tion de méta­stasesN20. L’auteur explique que la TEM pré­serve l’a­gen­ce­ment ini­tial des bases de l’ADN tout en modi­fiant la manière dont elles sont trans­crites en ARN. La régu­la­tion de cette trans­crip­tion influence la réponse des cel­lules can­cé­reuses à leur envi­ron­ne­ment. Elle est du même ordre que celle qui permet la tran­si­tion des œufs fer­ti­li­sés vers les cel­lules dif­fé­ren­ciées (poumon, rein etc.) dans les orga­nismes adultes.

Selon Watson, il serait pré­fé­rable de cher­cher en prio­rité des médi­ca­ments sus­cep­tibles de blo­quer la pro­li­fé­ra­tion des cel­lules can­cé­reuses, plutôt que leur crois­sance, car ces der­niers ont un effet indé­si­rable sur les cel­lules saines. Plusieurs pistes de recherche sont sug­gé­rées — que je ne sais pas ana­ly­ser… — notam­ment pour dés­in­hi­ber le méca­nisme d’apop­tose (N21 mort cel­lu­laire pro­gram­mée) assu­rant l’é­li­mi­na­tion des cel­lules endom­ma­gées. La pro­duc­tion d’agents oxy­dants (ROSN4) est un des acti­va­teurs de cette apop­tose, comme l’a prouvé le succès du médi­ca­ment mito­chron­drial eles­clo­mol (de Synta Pharmaceuticals), mais cette pro­duc­tion est aussi, nous l’a­vons vu, un des effets béné­fiques de l’exercice de haute intensité (N5). Selon Watson (2013N16),

Quand les molé­cules de ROS ainsi for­mées sont détruites par l’ad­mi­nis­tra­tion simul­ta­née d’une molé­cule anti-oxydante N‑acétylcystéineN22, la des­truc­tion ciblée des cel­lules can­cé­reuses s’in­ter­rompt. Le fait que l’eles­clo­mol ne peut pas déclen­cher l’a­pop­tose des cel­lules non-cancéreuses est pro­ba­ble­ment dû au plus bas niveau de ROSN4 intrin­sè­que­ment généré par la machi­ne­rie mito­chon­driale nor­male de trans­port des élec­trons.

Il sem­ble­rait pour lui que l’ef­fi­ca­cité de cer­tains trai­te­ments de chi­mio­thé­ra­pie, aussi bien que celle de rayon­ne­ments ioni­sants, tienne à leur faculté de pro­duire des radi­caux libres (ROSN4) uti­li­sés pour l’apop­toseN21 des cel­lules endom­ma­gées. Ce qui pour­rait expli­quer que cer­tains can­cers deve­nus résis­tants à la chi­mio­thé­ra­pie résistent aussi à la radio­thé­ra­pie. Les cel­lules can­cé­reuses contrô­lées prin­ci­pa­le­ment par les onco­gènesN23RAS et Myc, qui appa­raissent notam­ment en phase ter­mi­nale, sont parmi les plus dif­fi­ciles à éli­mi­ner. L’auteur sug­gère que cela pour­rait être dû à leur pro­duc­tion impor­tante d’anti-oxydants des­truc­teurs de radi­caux libres (ROS), notam­ment le glu­ta­thionN24, les super­oxyde dis­mu­tasesN25, la cata­laseN26 et la thio­ré­doxyneN27, pro­duc­tion contrô­lée par le fac­teur de trans­crip­tion Nrf2N28 ; ce fac­teur est à son tour contrôlé par les onco­gènes RAS, RAF et Myc qui favo­risent la crois­sance et la divi­sion des cel­lules.

Watson rap­pelle enfin que de nom­breuses études sur la sup­plé­men­ta­tion en anti-oxydants, prin­ci­pa­le­ment le béta­ca­ro­tène, les vita­mines A, C, E et le sélé­nium, n’ont montré aucune effi­ca­cité dans la pré­ven­tion du cancer gastro-intestinal ni dans la dimi­nu­tion de la mor­ta­lité. « Au contraire, il semble qu’ils réduisent légè­re­ment l’es­pé­rance de vie de ceux qui les consomment ».

Pour ce qui concerne l’exercice de haute intensité (N5), on entend par­fois dire qu’en favo­ri­sant la pro­duc­tion d’hor­mone de crois­sance il entraî­ne­rait la crois­sance des cel­lules can­cé­reuses. En réa­lité, c’est le fac­teur de crois­sance res­sem­blant à l’insuline (IGF‑1N29) qui en est res­pon­sable. L’hormone HGH pro­duit de l’IGF‑1 (par l’in­ter­mé­diaire du foie), mais elle pro­duit aussi des récep­teurs de l’IGF‑1 qui contre­carrent son effet sur les cel­lules can­cé­reuses. Le rap­port entre HGH et IGF‑1 est décrit dans l’ar­ticle Regulation of muscle mass by growth hor­mone and IGF‑I (Velloso CP, 2008N30).

Watson (2013N16) décrit ce qu’il per­çoit comme une impasse dans la pour­suite de la recherche sur le cancer :

Les thé­ra­pies géné­tiques indi­vi­duelles du cancer dont on fait grand cas en ce moment pour­raient s’a­vé­rer beau­coup moins inté­res­santes pour la méde­cine à venir que ne le laissent penser les articles de presse aujourd’­hui. Si l’on attri­buait plus de fonds de recherche gou­ver­ne­men­taux sur le cancer au déve­lop­pe­ment de médi­ca­ments nou­veaux anti-métastasiques par les ins­ti­tu­tions aca­dé­miques de haut niveau bien choi­sies, les fonds du National Cancer Institute (NCI) seraient mieux uti­li­sés que les larges sommes dépen­sées à essayer des médi­ca­ments qui ont peu de chance d’ap­por­ter du nou­veau. Le plus grand obs­tacle aujourd’­hui à une véri­table guerre contre le cancer peut être attri­bué au carac­tère intrin­sè­que­ment conser­va­teur des éta­blis­se­ments de recherche sur le cancer. Ils sont encore trop étroi­te­ment atta­chés à aller de l’a­vant avec des cock­tails de médi­ca­ments ciblant les molé­cules (comme HER2, RAS, RAF, MEK, ERK, PI3K, AKT et mTOR) qui faci­litent la crois­sance des voies de trans­duc­tion du signal, au lieu de cibler les molé­cules Myc qui gou­vernent spé­ci­fi­que­ment le cycle cel­lu­laire.

[…]

Au sommet du grand budget de la science au National Cancer Institute, on aper­çoit encore le projet The Cancer Genome Atlas (TCGA), qui par nature ne découvre que les déclen­cheurs de cancer au détri­ment des vul­né­ra­bi­li­tés (par­te­naires syn­thé­ti­que­ment mor­tels). Bien qu’au début j’aie sou­tenu TCGA dans sa recherche d’aides finan­cières impor­tantes, je ne le fais plus à pré­sent. Les 100 mil­lions de dol­lars injec­tés chaque année ont peu de chance de pro­duire les médi­ca­ments vrai­ment de pointe dont nous avons tant besoin.

Dans le même sens, Andrew Porterfield déplore que la « guerre contre le cancer » décla­rée en 1971 par le Président Richard Nixon soit actuel­le­ment foca­li­sée sur la recherche géné­tique (voir articleN31).

Un pro­blème pour­rait être le fait que les can­cers à tumeurs qui appa­raissent en pre­mier dans le corps, iden­ti­fiables par leur empla­ce­ment, que ce soit le foie, le poumon, le cer­veau ou le colon, ne sont pas les causes prin­ci­pales de décès par cancer. La plu­part des gens meurent à cause des cel­lules can­cé­reuses qui se détachent des tumeurs pri­maires et s’ins­tallent dans d’autres par­ties du corps. Ce méca­nisme de méta­staseN20 est res­pon­sable de 90% des décès par cancer. Or seule­ment 5% des fonds de recherche euro­péens sur le cancer, et 2% aux USA, sont consa­crés à la recherche sur les méta­stases.

James Watson conclut son article (2013N16) par l’es­poir que les grandes firmes phar­ma­ceu­tiques entre­pren­dront une étude concer­tée, au moins sur les prin­ci­paux can­cers (sein, colon et poumon), en exploi­tant la tech­nique d’in­ter­fé­rence par ARN (RNAiN32). Cette tech­nique sus­cite de grands espoirs (voir Kaelin WG, 2012N33) et sa mise en œuvre néces­si­te­rait un inves­tis­se­ment de moins d’un mil­liard de dol­lars. Un projet ciblant la tota­lité du génome a été initié par Pfizer en col­la­bo­ra­tion avec le Cold Spring Harbor LaboratoryN34.

La pro­po­si­tion de Watson en 2009 (To Fight Cancer, Know the EnemyN35) — chan­ger son fusil d’é­paule dans la recherche de trai­te­ments du cancer, par un retour sur scène de la théo­rie méta­bo­lique — pour­rait avoir été ins­pi­rée par Lewis Cantley, fon­da­teur de la start-up AgiosN36 foca­li­sée sur le méta­bo­lisme du cancer. En effet, selon Christofferson (2014N37, p. 119–120), James Watson aurait trans­mis à Cantley le dos­sier qui lui avait été confié par Young Ko, à titre confi­den­tiel, sur l’ex­pé­ri­men­ta­tion du trai­te­ment par 3BP (voir ci-dessous). Watson déclare :

L’idée que les cel­lules can­cé­reuses puissent par­ta­ger un ensemble commun de molé­cules qu’on ne trouve pas dans la plu­part des autres cel­lules de notre corps a été pro­po­sée en pre­mier par le grand bio­chi­miste alle­mand Otto Warburg. En 1924, il a observé que toutes les cel­lules can­cé­reuses, indé­pen­dam­ment du fait qu’elles croissent en la pré­sence ou en l’ab­sence d’oxy­gène, pro­duisent de grandes quan­ti­tés d’a­cide lac­tique. Mais c’est seule­ment il y a un an que le sens de la décou­verte de Warburg a été révélé : le méta­bo­lisme des cel­lules can­cé­reuses, et bien sûr de toutes les cel­lules qui pro­li­fèrent, est lar­ge­ment dirigé vers la syn­thèse des blocs de construc­tion cel­lu­laires à partir des pro­duits de dégra­da­tion du glu­cose.

James Watson (2009N35)

En sous-entendant que l’hypo­thèse de WarburgN38 aurait été réha­bi­li­tée « il y a un an », autre­ment dit par Cantley et son équipe, Watson fai­sait l’im­passe sur plus de trente années de tra­vaux effec­tués par Peter Pederson dans la conti­nua­tion de ceux de Warburg — mais il semble être cou­tu­mier du pro­cédé vu le sort qu’il a réservé à Rosalind FranklinN39 !

Warburg, le retour

En 2000, Douglas Hanahan et Robert Weinberg ont publié dans Cell un article majeur — le plus cité de cette revue — qui fait le point sur six pro­prié­tés carac­té­ris­tiques des can­cers (The Hallmarks of CancerN40) : les cel­lules can­cé­reuses sti­mulent leur propre crois­sance, elles sont insen­sibles aux signaux inhi­bi­teurs de la crois­sance, elles peuvent éviter la mort cel­lu­laire pro­gram­mée (apop­toseN21), elles ont la capa­cité de se repro­duire indé­fi­ni­ment, elles induisent la capa­cité à faire croître de nou­veaux vais­seaux san­guins qui per­mettent la crois­sance des tumeurs (angio­ge­nèseN41) et elles se répandent sur des sites dis­tants (méta­stasesN20).

Peter_Pedersen
Peter Pedersen
Source : N42

En mars 2009, Peter Pedersen a été invité à inter­ve­nir dans un sémi­naire au NIH (voir vidéoN43) au cours duquel il a parlé de la décou­verte du 3BP (voir ci-dessous), mais aussi évoqué l’hy­po­thèse de Hanahan et Weinberg en signa­lant (10 minutes après le début de l’ex­posé) qu’ils avaient omis d’in­clure l’effet WarburgN44 dans leur liste. Suite à cette inter­ven­tion, Hanahan et Weinberg ont publié en 2011 un deuxième article, Hallmarks of cancer : the next gene­ra­tionN45, iden­ti­fiant deux capa­ci­tés dis­tinc­tives émer­gentes : la déré­gu­la­tion du méta­bo­lisme éner­gé­tique cel­lu­laire et la capa­cité d’é­vi­ter une des­truc­tion par le sys­tème immu­ni­taire (voir WikipediaN46).

Weinberg recon­nais­sait main­te­nant l’effet WarburgN44 mais sans l’as­so­cier à un dys­fonc­tion­ne­ment des mito­chon­driesN47 Il le consi­dé­rait comme pro­ve­nant du noyau : une repro­gram­ma­tion du méta­bo­lisme conduite par les onco­gènes.

Thomas_Seyfried
Thomas Seyfried
Source : N48

Thomas SeyfriedN49 pro­fes­seur de bio­lo­gie au Boston College (Université de l’Illinois), cite l’ex­pé­rience de McKinnel RG et al. (1969N50) qui consis­tait à trans­plan­ter le noyau d’une cel­lule can­cé­reuse d’une gre­nouille en rem­pla­ce­ment de celui d’une cel­lule saine de têtard : malgré l’al­té­ra­tion géné­tique de son noyau, la nou­velle cel­lule n’a pas donné lieu à une pro­li­fé­ra­tion can­cé­reuse (Seyfried T, 2015aN51 et 2015bN52).

Cette expé­rience met en défaut la théo­rie géné­tique du cancer (SMT) car elle montre que des muta­tions signi­fi­ca­tives pour­raient avoir lieu dans le cyto­plasme (i.e. les mito­chon­driesN47) plutôt que dans l’ADN du noyau cel­lu­laire. Ces résul­tats ont montré que des noyaux pro­ve­nant de cel­lules tumo­rales pou­vaient diri­ger un déve­lop­pe­ment normal et n’ont pas induit une crois­sance cel­lu­laire déré­gu­lée, le phé­no­type de signa­ture de la tumo­ri­ge­nèse (Seyfried T, 2015aN51).

Seyfried a revi­sité la théo­rie d’Otto Warburg selon laquelle tout cancer serait en pre­mier lieu l’ef­fet d’un dérè­gle­ment de méta­bo­lisme cel­lu­laire, en l’ac­tua­li­sant à partir des don­nées de la bio­mé­de­cine et de la com­pré­hen­sion récente du fonc­tion­ne­ment des mito­chon­dries. Il cite des cas de cancer du cer­veau comme preuves du bien-fondé de solu­tions méta­bo­liques au trai­te­ment de la mala­die ; il expose des simi­la­ri­tés avec d’autres types de cancer, notam­ment du sein et du côlon, liées à l’i­den­tité de leurs muta­tions cel­lu­laires. Toutefois, son expé­ri­men­ta­tion se limite au cas de tumeurs céré­brales sur des modèles ani­maux, ce qui limite for­te­ment le niveau de preuve pour les autres can­cers et l’ap­pli­ca­bi­lité aux humains des trai­te­ments.

Michael O’Neill (2013bN53) com­mente :

Une des par­ties les plus magni­fi­que­ment écrites et convain­cantes de l’hy­po­thèse exhaus­tive de Seyfried est l’idée que la méta­staseN20 est un pro­ces­sus trop com­plexe pour être pris en compte par des muta­tions géné­tiques aléa­toires. L’idée que de nom­breux types de cel­lules can­cé­reuses recueille­raient en quelque sorte les muta­tions géné­tiques cor­rectes pour leur per­mettre d’en­trer et de sortir des tissus, échap­per à la détec­tion par le sys­tème immu­ni­taire, et se pro­pa­ger dans tout le corps semble ridi­cule. Dès les débuts de Cancer as a Metabolic Disease, Seyfried com­mence à remettre en ques­tion cela et mon­trer com­ment le pro­ces­sus de méta­stase implique des capa­ci­tés déjà pré­sentes dans cer­tains macro­phagesN54 et leu­co­cytesN55. […] C’est un thème récur­rent dans le livre, et à cer­tains endroits il remarque même que « Aichel [1911*] a sug­géré il y a près d’un siècle que la pro­gres­sion de la tumeur impli­quait une fusion entre des leu­co­cytes et des cel­lules soma­tiquesN56 ». Et c’est cette théo­rie de la fusion, et non des muta­tions géné­tiques, que Seyfried pré­co­nise comme source de la capa­cité d’une cel­lule can­cé­reuse à méta­sta­ser.

(*) Aichel O. (1911). About cell fusion with qua­li­ta­ti­vely abnor­mal chro­mo­some dis­tri­bu­tion as cause for tumor for­ma­tion. In : Roux W, editor. Vorträge und Aufsätze über Entvickelungsmechanik Der Organismen. Leipzig, Germany : Wilhelm Engelmann, 1911 : 92–111. (En alle­mand)

Cette hypo­thèse est confir­mée par Lazova R et al. (2013N57) qui ont observé un méca­nisme de fusion dans les méta­stases d’un cancer du cer­veau consé­cu­tif à une greffe de moëlle épi­nière. John M. Pawelek, un des co-auteurs de la publi­ca­tion, com­mente (voir pageN58) :

Nos résul­tats consti­tuent la pre­mière preuve pour les [can­cers] humains d’une théo­rie pro­po­sée en 1911 par un patho­lo­giste alle­mand [O. Aichel], que la méta­staseN20 se pro­duit quand un leu­co­cyteN55 et une cel­lule can­cé­reuse fusionnent en for­mant un hybride géné­tique. Cela pour­rait ouvrir la voie à de nou­velles cibles thé­ra­peu­tiques, mais beau­coup de tra­vail reste à faire pour déter­mi­ner la façon dont la fusion se pro­duit, la fré­quence de ces hybrides dans les can­cers humains, et le rôle poten­tiel des hybrides dans les méta­stases.

Pawelek écrit dans un autre article consa­cré à une expé­ri­men­ta­tion ani­male (2014N59):

Le modèle est simple : cel­lule blanche du sang + cel­lule can­cé­reuse non-métastasique = cel­lule can­cé­reuse méta­sta­sique. Mais il four­nit une expli­ca­tion pro­fonde et uni­fi­ca­trice de la méta­staseN20.

Travis Christofferson (2014N37 p. xviii-seq) explique à sa manière le retour à une théo­rie méta­bo­lique du cancer :

Tripping_over_the_truth

Quand je me suis penché sur les don­nées issues de TCGA, ce que j’ai décou­vert était éton­nant. Rien ne fai­sait sens. Avant le projet, les cher­cheurs croyaient fer­me­ment que les don­nées de séquen­çage révè­le­raient une séquence ordon­née de peut-être trois à huit gènes qui, après avoir muté, se mani­fes­te­raient dans un type par­ti­cu­lier de cancer — une signa­ture com­pa­rable à une empreinte digi­tale — et qu’ils pour­raient tra­vailler à partir de cette signa­ture pour déve­lop­per des trai­te­ments. Mais ce que les don­nées de séquen­çage ont révélé n’a­vait rien d’or­donné. Elles explo­saient en une col­lec­tion presque aléa­toire de muta­tions — dont pas une seule, ni une confi­gu­ra­tion appro­priée, était abso­lu­ment res­pon­sable du déclen­che­ment de la mala­die.

[…]

Pourquoi les médi­ca­ments ciblés qu’on avait promis ne se sont pas maté­ria­li­sés ? Pour com­men­cer, TCGA n’a pas réussi à iden­ti­fier les muta­tions qui sans équi­voque cau­saient un type donné de cancer. Par consé­quent, les cher­cheurs n’ont pas pu trou­ver la ou les cibles cor­rectes. Deuxièmement, une autre décou­verte a été faite grâce à TCGA, de celles qui pro­jettent un nuage sombre sur tout espoir de percée signi­fi­ca­tive dans l’a­ve­nir. D’un point de vue géné­tique, la concep­tion du médi­ca­ment est un jeu dif­fi­cile et brutal de « attrape-moi si tu peux ». Les cibles muta­tion­nelles n’é­taient pas seule­ment très dif­fé­rentes d’une per­sonne à une autre, elles variaient aussi spec­ta­cu­lai­re­ment d’une cel­lule à l’autre à l’in­té­rieur de la même tumeur, confron­tant les phar­ma­co­logues à une tâche de dif­fi­culté insur­mon­table.

[…]

Au lieu de cibler des muta­tions qui peuvent varier d’une seconde à l’autre, la théo­rie méta­bo­lique a remis les cher­cheurs sur le siège du conduc­teur. […] Bien que mécon­nues et dépré­ciées, les thé­ra­pies issues de la logique que le cancer pro­vient d’un méta­bo­lisme endom­magé ont donné des résul­tats remar­quables. Les thé­ra­pies méta­bo­liques découlent d’un simple agen­ce­ment logique. Toute cel­lule can­cé­reuse pré­sente le même défaut et la même cible exploi­table.

Nouveaux traitements

Travis Christofferson (2014N37) évoque de nom­breuses ten­ta­tives infruc­tueuses d’u­ti­li­ser de nou­velles molé­cules — ou com­bi­nai­sons de molé­cules — pour le trai­te­ment du cancer par chi­mio­thé­ra­pie. Dans un pre­mier temps, le médi­ca­ment paraît effi­cace, même au prix de souf­frances cau­sées par ses effets indé­si­rables sur les cel­lules saines. Mais les rechutes fatales à court et moyen terme se révélent fré­quentes. Les per­sonnes qui ont sur­vécu à des can­cers loca­li­sés suite à un trai­te­ment par chi­mio­thé­ra­pie sont aussi expo­sées à un risque net­te­ment accru (2 à 10 fois) de mala­dies car­dio­vas­cu­laires, effet indé­si­rable des médi­ca­ments (Strongman H et al., 2019N60).

Cet avis mérite d’être rela­ti­visé au vu des sta­tis­tiques de mor­ta­lité par cancer. Selon les don­nées de la société amé­ri­caine de can­cé­ro­lo­gie publiées dans CA : Cancer Journal for Clinicians, en 25 ans la mor­ta­lité par cancer a dimi­nué de 27 % aux États-Unis (Le Quotidien du Médecin, 9/1/2019N61) :

La société amé­ri­caine de can­cé­ro­lo­gie attri­bue cette amé­lio­ra­tion au recul du taba­gisme d’une part, et aux pro­grès réa­li­sés dans la détec­tion pré­coce et le trai­te­ment de 4 can­cers les plus fré­quents – poumon, sein, pros­tate et côlon – d’autre part. Le taux de décès lié au cancer du poumon a ainsi chuté de 48 % entre 1990 et 2016 chez les hommes et de 23 % entre 2002 et 2016 chez les femmes. Le taux de décès lié au cancer du sein a dimi­nué de 40 % entre 1989 et 2016, tandis que les taux de mor­ta­lité par cancer de la pros­tate et par cancer colo­rec­tal ont été réduits de moitié entre 1970 et 2016.

Dans le même temps, on sou­ligne une aug­men­ta­tion de la mor­ta­lité d’autres can­cers plus rares. C’est le cas du taux de mor­ta­lité du cancer du foie (+1,2 % par an entre 2012 et 2016 chez les hommes, +2,6 % chez les femmes) et du cancer du pan­créas (+0,3 % par an chez les hommes).

La pro­ba­bi­lité de survie d’un patient dans une période donnée est éva­luée à l’aide de la for­mule de Kaplan-Meier (voir dis­cus­sionN62) :
(nbre de patients vivants au départ – nbre de patients décédés)/(nbre de patients vivants au départ)

Thomas Seyfried (voir vidéoN52 36:20) cite l’é­tude de Stupp R. et al. (2009N63) qui donne le résul­tat, pour 573 patients atteints de de glio­blas­tome (N64 tumeur du cer­veau), d’un trai­te­ment par chi­mio­thé­ra­pie (témo­zo­lo­mide, TMZN65) com­biné avec la radio­thé­ra­pie, en com­pa­rai­son avec la radio­thé­ra­pie seule. Une « preuve » de l’ef­fi­ca­cité du TMZ est éta­blie par la dif­fé­rence entre la courbe bleue et la courbe rouge (figure ci-dessous).

TMZ-radiotherapy-survival-rate
Source : N63

Les courbes illus­trent tou­te­fois le fait que 89% des patients étaient décé­dés au bout de 5 ans dans le groupe chimio+radiothérapie, et 97% dans le groupe radio­thé­ra­pie seule. Ce qu’elles ne montrent pas est l’in­con­fort des patients pen­dant le temps du trai­te­ment (voir les effets indé­si­rables en mono­thé­ra­pie du TMZN65, ni le coût du médi­ca­ment : pour le TMZ seul, envi­ron 50000 $ par année de trai­te­ment (voir sourceN66).

Enfin, l’é­tude de Johnson BE et al. (2014N67) révèle que les tumeurs appa­rais­sant lors de récur­rences pré­sentent de nou­velles muta­tions qui ont été pro­vo­quées par le trai­te­ment au TMZ. On peut se deman­der, dans ce cas, pour­quoi la survie des patients a légè­re­ment aug­menté. Seyfried sug­gère que ce pour­rait être le seul effet de la res­tric­tion calo­rique dont les patients font l’ex­pé­rience en raison des vio­lents effets indé­si­rables (vomis­se­ments etc.). Si cette hypo­thèse est véri­fiée, l’ef­fi­ca­cité (très rela­tive) d’un médi­ca­ment aussi coû­teux serait uni­que­ment liée à ses effets secon­daires…

Christofferson (2014N37, p. 157) écrit :

Depuis que l’HerceptineN68 [GenentechN69 1998] a initié la révo­lu­tion des médi­ca­ments ciblés, un regard objec­tif sur les résul­tats dresse un tableau dépri­mant. « Une esti­ma­tion pru­dente du nombre de thé­ra­pies ciblées tes­tées chez des patients atteints de cancer dans la der­nière décen­nie a été sept cent », a déclaré Antonio Tito Fojo, Ph.D., chef de la Section de thé­ra­peu­tique expé­ri­men­tale et cher­cheur prin­ci­pal des Medical Oncology Branch Affiliates au Center for Cancer Research du National Cancer Institute à Bethesda, Maryland, « cepen­dant aucun patient atteint de tumeur solide n’a été guéri par thé­ra­pie ciblée sans cette période. Le nombre de thé­ra­pies ciblées qui ont pro­longé la survie d’un an, par rap­port à un trai­te­ment conven­tion­nel, est zéro ». [N70]

L’écrivain scien­ti­fique Ralph Moss a signalé les cri­tères bizarres que la FDA [Food and Drug Administration aux USA] uti­lise pour approu­ver [la mise sur le marché des] médi­ca­ments, per­met­tant à une foule de médi­ca­ments inef­fi­caces d’ob­te­nir l’ap­pro­ba­tion :

« Si vous pouvez réduire la tumeur de 50 pour cent ou plus pen­dant 28 jours vous avez la défi­ni­tion de la FDA d’un médi­ca­ment actif. On appelle cela un taux de réponse, de sorte que vous avez une réponse… (Mais) quand vous cher­chez s’il y a une quel­conque pro­lon­ga­tion de la vie après ce trai­te­ment, ce que vous trou­vez est toutes sortes d’a­bra­ca­da­bra et de pirouettes sur la survie sans mala­die, et ceci et cela. »

[…]

Un exemple de l’état actuel de médi­ca­ments contre le cancer est le beva­ci­zu­mab (N71 Avastin). Il a reçu l’ap­pro­ba­tion de la FDA en 2004 pour le cancer du côlon méta­sta­tique et plus tard a reçu l’ap­pro­ba­tion pour d’autres appli­ca­tions, y com­pris le cancer du sein. Traiter le patient moyen de cancer du sein avec l’Avastin coûte 90 816 dol­lars par an, sans pro­lon­ger la survie glo­bale. Mais comme il a dimi­nué des tumeurs dans quelques cas, la FDA l’a approuvé, ce qui sou­ligne les cri­tères absurdes uti­li­sés pour l’ap­pro­ba­tion des médi­ca­ments. Pire, les patients qui ont été trai­tés par l’Avastin en com­plé­ment du pacli­taxelN72 avaient deux fois plus de risque de subir une toxi­cité net­te­ment plus élevée.

➡ Précisons que la FDA ne man­date pas d’or­ga­nisme indé­pen­dant pour effec­tuer des tests de médi­ca­ments. Elle se base uni­que­ment sur les rap­ports four­nis par les indus­triels pour approu­ver la mise sur le marché de leurs pro­duits. Le scan­dale du VioxxN73 dif­fusé par Merck peut donner à réflé­chir (voir articleN74)…

La décou­verte de molé­cules sus­cep­tibles d’a­mé­lio­rer consi­dé­ra­ble­ment le soin de can­cers agres­sifs fait l’ob­jet de cam­pagnes de com­mu­ni­ca­tions qui faci­litent la levée de fonds mais peuvent donner aux malades de faux espoirs : soit la molé­cule, testée sur des cultures de cel­lules ou en expé­ri­men­ta­tion ani­male, se révè­lera inef­fi­cace pour le trai­te­ment des humains, soit les essais cli­niques per­met­tant d’a­bou­tir à une poso­lo­gie et à son auto­ri­sa­tion de mise sur le marché pren­dront de longues années au terme des­quelles les patients ciblés seront décé­dés. Un exemple d’an­nonce faus­se­ment pro­met­teuse est celui, en 2019, de l’hy­dro­chlo­ride PJ34 « qui soigne en 14 jours le cancer du pan­créas » mais seule­ment pour une souche de souris de labo­ra­toireN75

Après la brève car­rière de l’Herceptine, un médi­ca­ment nommé GLEEVEC (més­i­late d’i­ma­ti­nibN76) a sus­cité d’im­menses espoirs. Il ciblait une muta­tion par­ti­cu­lière ren­con­trée dans une forme rare de leu­cé­mie : la leu­cé­mie myé­loïde chro­nique (CMLN77). Ce médi­ca­ment était le pre­mier à guérir le cancer en empê­chant une muta­tion, jus­ti­fiant par cela la théo­rie géné­tique. Harold Varmus a publié à cette occa­sion un essai titré “The New Era in Cancer Research” (La nou­velle ère de la recherche sur le cancer). On évo­quait en effet un « chan­ge­ment de para­digme » dans le déve­lop­pe­ment des médi­ca­ments contre le cancer.

Le GLEEVEC s’at­taque à un chro­mo­some défec­tueux, sur­nommé “the Philadelphia chro­mo­some”, décou­vert en 1960 par Peter Nowel dans un labo­ra­toire de Philadelphie. La décou­verte du trai­te­ment est attri­buée à Jurg Zimmermann et Nicholas Lydon dans un labo­ra­toire suisse (Ciba-Geigy). Lydon a réussi à mener le test cli­nique après un retard consi­dé­rable causé par la fusion de Ciba-Geigy avec Sandoz pour former Novartis, dont les diri­geants refu­saient de prendre le risque d’un finan­ce­ment de 100 mil­lions de dol­lars sans garan­tie de retour sur inves­tis­se­ment, car la mala­die ciblée avait une inci­dence rare… Le test a fina­le­ment eu lieu avec la col­la­bo­ra­tion de Brian Druker qui tra­vaillait au Dana Farber Cancer Institute de Boston. Sur 54 patients, 53 ont réagi posi­ti­ve­ment quelques jours après avoir com­mencé le trai­te­ment. Les patients retrou­vaient tota­le­ment la santé et leur vie rede­ve­nait nor­male.

Le succès du GLEEVEC était total (voir Pray L, 2008N78) bien qu’il ne puisse soi­gner qu’une forme rare de cancer (la CML). Mais sa per­ti­nence en tant que preuve de la théo­rie géné­tique n’a pas été confir­mée. D’une part, la CML pro­cède d’une muta­tion unique et tou­jours iden­tique. D’autre part, cer­taines per­sonnes pos­sé­dant cette muta­tion ne déve­loppent pas de cancer. Enfin, envi­ron 20% des per­sonnes souf­frant de CML à un stade avancé ne sur­vivent pas malgré le trai­te­ment. La muta­tion, en soi, ne peut donc pas être consi­dé­rée comme la cause pre­mière du cancer. Seyfried et Pedersen ont d’ailleurs remar­qué que l’ac­tion du GLEEVEC appor­tait de l’eau au moulin de la théo­rie méta­bo­lique (voir Seyfried TN et al., 2014N79)

L’histoire mouvementée du 3BP

Le coût annuel des médi­ca­ments can­cé­reux, aux USA, est passé d’en­vi­ron 5000 $ avant 2000 à 40000 $ vers 2005, et en 2012 presque chaque nou­veau médi­ca­ment coû­tait plus de 100000 $ (Christofferson T, 2014N37, p. 158). C’est le cas notam­ment du GLEEVEC, alors que l’Herceptine ne coû­tait « que » 70000 $ (voir pageN80). Dans cette confi­gu­ra­tion, la décou­verte d’un médi­ca­ment très peu coû­teux, et capable d’agir sélec­ti­ve­ment sur tous les types de cel­lules can­cé­reuses, consti­tue­rait une avan­cée signi­fi­ca­tive. C’est le cas du 3‑Bromopyruvate (3BP) (voir Pedersen P, 2012N81 et Valenti D et al., 2015N82) dont l’his­toire a été tumul­teuse. On peut en lire les épi­sodes dans l’ou­vrage de Christofferson (2014N37, p. 104–123) basé sur des entre­tiens avec les prin­ci­paux pro­ta­go­nistes, notam­ment Young H. Ko et Peter L. Pedersen.

Young Hee Ko a été formée jus­qu’en 1981 à l’Université Kon-Kuk à Séoul (Corée du Sud). L’année sui­vante, elle a émigré aux États-Unis et s’est ins­crite au pro­gramme de master de phy­sio­lo­gie de la nutri­tion à l’Université de l’État de l’Iowa. Munie de son diplôme, en 1985, elle a pour­suivi ses études jus­qu’au doc­to­rat de bio­chi­mie à l’Université de l’État de Washington (en 1990). Elle a ensuite rejoint pour un post-doc le labo­ra­toire de Peter Pedersen à l’Université Johns Hopkins de Baltimore, où elle s’est inté­res­sée à la fibrose kys­tique (muco­vis­ci­doseN83), réus­sis­sant à iden­ti­fier le codon défec­tueux qui altère la pro­téine CFTR (cystic fibro­sis trans­mem­brane conduc­tance regu­la­tor). Elle a été ensuite orien­tée vers la recherche sur le cancer, tou­jours sous la direc­tion de Pederson qui explo­rait comme fon­da­tion théo­rique l’hypo­thèse de WarburgN38 à contre-courant de la théo­rie géné­tique (SMT, Somatic Mutation Theory). Il s’a­gis­sait pour eux de trou­ver un moyen d’i­so­ler et inhi­ber les effets de l’hexo­ki­nase IIN84, une enzyme dont l’ex­pres­sion est accrue dans de nom­breux can­cers (Mathupala SP et al., 2006N85).

Ko est partie du constat que les cel­lules can­cé­reuses pro­duisent de l’a­cide lac­tique en très grande quan­tité, de sorte qu’elles pour­raient mourir asphyxiées si on les empê­chait d’en éli­mi­ner l’ex­cès. Ces cel­lules sur­pro­duisent dans leur mem­brane une pro­téine qu’on appelle trans­por­teur de mono­car­boxy­late (MCTN86), agis­sant comme une porte qui auto­rise l’a­cide lac­tique et l’a­nion pyru­vateN87 à entrer et sortir de la cel­lule. Les « portes » sont plus nom­breuses dans les cel­lules can­cé­reuses que dans les cel­lules saines.

boite-de-Petri
Boîte de Pétri en verre.
(Szalka Petriego)
CC BY-SA 3.0

La cher­cheuse s’est sou­ve­nue qu’elle avait tra­vaillé à Washington avec le 3‑Bromopyruvate (3BP), une molé­cule dont la struc­ture est très proche de celle du pyru­vate. La pro­téine MCT pour­rait donc la lais­ser passer, de sorte qu’une fois par­ve­nue à l’in­té­rieur de la cel­lule can­cé­reuse elle se com­por­te­rait comme un cheval de Troie en détrui­sant de l’hexo­ki­nase IIN84. La méthode parais­sait trop simple pour être effi­cace, mais Young Ko a tenu à la véri­fier. Elle a cultivé des cel­lules can­cé­reuses dans une boîte de Pétri et observé leurs réac­tions à diverses molé­cules, en com­pa­rai­son avec le 3BP, décou­vrant que cette der­nière molé­cule agis­sait bien plus effi­ca­ce­ment, et sur tous les types de cancer, ce qui n’é­tait pas le cas des autres molé­cules. La dif­fé­rence majeure tenait au fait que le médi­ca­ment inter­vient sur un aspect inva­riant du méta­bo­lisme des cel­lules plutôt que de cibler des confi­gu­ra­tions par­ti­cu­lières de muta­tions.

Par la suite, Ko et Pedersen ont véri­fié l’ef­fi­ca­cité du 3BP en expé­ri­men­ta­tion ani­male, avec le même succès, consta­tant que la molé­cule n’in­dui­sait pas d’ef­fets secon­daires qui auraient eu une issue fatale, comme ils le crai­gnaient au départ. Il res­tait à passer à l’ex­pé­ri­men­ta­tion humaine, une étape qui s’est révé­lée extrê­me­ment dif­fi­cile et dou­lou­reuse pour les cher­cheurs, pour plu­sieurs rai­sons. Une molé­cule qui rédui­sait à une cen­taine de dol­lars le coût du trai­te­ment d’un cancer n’in­té­res­sait pas par­ti­cu­liè­re­ment l’in­dus­trie phar­ma­ceu­tique, prin­ci­pal finan­ceur, aux USA, d’es­sais cli­niques qui se comptent en mil­lions de dol­lars. Mais la pro­messe d’un succès scien­ti­fique aigui­sait les appé­tits, entre autres celui d’un col­la­bo­ra­teur subal­terne que les décou­vreurs avaient asso­cié au dépôt de leur pre­mier brevet sur le trai­te­ment anti­can­cé­reux par 3BP — « la plus gros­sière erreur de ma car­rière » décla­rait Pederson (Christofferson T, 2014N37, p. 107). Cet ancien col­la­bo­ra­teur a fondé par la suite un labo­ra­toire concur­rent (PreScience LabsN88).

Young Ko est entrée en conflit avec le dépar­te­ment de radio­lo­gie de Johns Hopkins qui lui avait offert un contrat de trois ans sans mettre un espace à sa dis­po­si­tion pour mener son expé­ri­men­ta­tion (Christofferson T, 2014N37, p. 104–107). Elle pou­vait deman­der des sub­ven­tions mais n’a­vait aucune chance de les obte­nir, faute d’es­pace de tra­vail. La situa­tion s’est enve­ni­mée après l’oc­troi d’une bourse Susan B. Komen et que l’es­pace promis lui ait encore été refusé par Chi Dang, vice-doyen de la recherche à Johns Hopkins. Quand Pedersen avait pré­senté les pers­pec­tives du 3BP dans le trai­te­ment du cancer, le labo­ra­toire avait immé­dia­te­ment com­mandé un stock de 3BP pour son usage, puis obtenu de Ko plus de 80 heures de trans­fert d’ex­per­tise… Ayant pro­testé contre ce qu’elle per­ce­vait comme une appro­pria­tion de son tra­vail et un sabo­tage de sa car­rière, elle a été licen­ciée après avoir refusé une exper­tise psy­chia­trique exigée par son employeur. Elle a déposé une plainte pour dis­cri­mi­na­tion le 1er juin 2005 à la cour du District de Maryland, qui a été reje­tée (voir motifs : #1:05-cv-01475-WDQN89).

La recherche d’un finan­ce­ment pour un essai cli­nique sur des patients du cancer s’est avérée un véri­table par­cours du com­bat­tant, cer­tains labo­ra­toires concur­rents essayant de s’emparer de la tech­nique en sou­ti­rant un maxi­mum d’in­for­ma­tions des auteurs — et de leurs dos­siers d’ex­per­tise…

Le pre­mier essai du 3BP sur un humain a eu lieu en 2008, lorsque Young Ko a été contac­tée par le père d’Yvar Verhoeven, un enfant néer­lan­dais de 16 ans atteint d’un car­ci­nome hépa­to­cel­lu­laireN90 dont 95% du foie s’é­tait consumé en pro­dui­sant des masses can­cé­reuses de la gros­seur du poing. Le cancer avait déjà migré vers son cœur. Après une longue pro­cé­dure pour trou­ver un méde­cin accep­tant d’es­sayer le trai­te­ment, puis pour obte­nir le feu vert du comité d’é­thique, l’in­ter­ven­tion a été menée fin février 2009 par Thomas Vogl, de l’Université de Francfort. La gué­ri­son de ce patient a été rapide et com­plète, sans mani­fes­ta­tion d’ef­fets secon­daires. Un an plus tard, tou­te­fois, il a suc­combé à une pneu­mo­nie en raison de l’im­pos­si­bi­lité de lui admi­nis­trer des anti­bio­tiques qu’un foie réduit à 5% de son volume n’au­rait pas pu sup­por­ter. L’examen post-mortem a confirmé qu’au­cune cel­lule can­cé­reuse ne sub­sis­tait dans son orga­nisme, ce qui écar­tait tout soup­çon de rechute.

L’expérimentation avec le 3BP se pour­suit. Cette molé­cule est une de celles qui offrent le plus de pers­pec­tives pour le trai­te­ment du cancer (voir Ko YH et al., 2012N91, El Sayed SM et al., 2014N92 etc.). Elle béné­fi­cie d’une vali­da­tion « tech­nique » en expé­ri­men­ta­tion ani­male, mais il fau­drait réunir 3 mil­lions de dol­lars pour pro­cé­der à une vali­da­tion cli­nique en expé­ri­men­ta­tion humaine. Même PreScience LabsN88 qui a reçu en 2013 l’au­to­ri­sa­tion de la US Food & Drug Administration (FDAN93) (voir com­mu­ni­qué de presseN94) n’a pas encore obtenu, à ce jour, un finan­ce­ment de son pre­mier essai cli­nique (phase 1).

Autres traitements récents

De nou­veaux trai­te­ments anti-cancéreux sont appa­rus : immu­no­thé­ra­pies anti­can­cé­reuses et inhi­bi­teurs de tyro­sines kinases. Ils sont mieux ciblés et donc plus effi­caces, mais ils entraînent aussi de nou­veaux effets secon­daires qui demandent un suivi par­ti­cu­lier. D’après Le Quotidien du méde­cin (29/11/2016N95),

Sous chi­mio­thé­ra­pies conven­tion­nelles, des rashs cuta­nés [N96] peuvent être obser­vés sous doxo­ru­bi­cine (par exemple), des paro­ny­chies [N97] (sous taxanes), des syn­dromes mains-pieds (sous fluo­ro­py­ri­mi­dine). Sous thé­ra­pies ciblées, xérose [N98], paro­ny­chies (hémor­ra­gies sous-unguéales, pseudo-panaris,…), pul­pites sèches [N99], fol­li­cu­lites [N100], kéra­tose pilaire [N101] (sous anti-BRAF, par exemple), rash, ulcé­ra­tions cutanéo-muqueuses (par exemple, sous inhi­bi­teurs de mTOR), syn­dromes mains-pieds (sous inhi­bi­teurs de tyro­sines kinases (TKI)) etc… sont fré­quentes et doivent être anti­ci­pées par des mesures pré­ven­tives adap­tées pour limi­ter les pro­blèmes liés à la mau­vaise obser­vance.

La thé­ra­pie d’a­ci­di­fi­ca­tion pho­to­dy­na­mique uti­lise l’in­jec­tion d’une simple dose de nitro­ben­zal­dé­hydeN102 suivie d’une expo­si­tion à un rayon­ne­ment ultra­vio­let, qui a pour effet d’a­ci­di­fier les cel­lules can­cé­reuses et de déclen­cher leur apop­toseN21. Elle a été véri­fiée sur des souris atteintes de la forme la plus inva­sive de cancer du sein (triple néga­tif) : en peu de temps, la crois­sance de la tumeur était inter­rom­pue, sans que les cel­lules saines ne soient affec­tées, et le taux de survie après trai­te­ment était signi­fi­ca­ti­ve­ment aug­menté (Kadri NB et al., 2016N103). Selon l’es­ti­ma­tion d’un cher­cheur, 95% des cel­lules can­cé­reuses auraient été détruites en deux heures.

L’équipe essaie main­te­nant de déve­lop­per une nano­par­ti­cule qui per­met­trait de cibler les cel­lules can­cé­reuses de can­cers méta­sta­sés (University of Texas, 2016N104). L’enjeu est cru­cial car les méta­stases contri­buent très for­te­ment à la faible effi­ca­cité de la chi­mio­thé­ra­pie conven­tion­nelle, comme le sou­ligne Peter Wise (2016N105) :

Une méta-analyse publiée en 2004, à partir d’es­sais ran­do­mi­sés aus­tra­liens et amé­ri­cains, a exploré la contri­bu­tion de la chi­mio­thé­ra­pie cyto­toxique à la survie à cinq ans chez 250 000 adultes atteints de can­cers solides [méta­sta­sés]. Un effet impor­tant a été montré sur la survie à cinq ans seule­ment pour le cancer des tes­ti­cules (40%), la mala­die de Hodgkin (37%), le cancer du col de l’u­té­rus (12%), le lym­phome (10,5%) et le cancer de l’o­vaire (8,8%). Ensemble, ils repré­sen­taient moins de 10% de tous les cas. Dans les 90% res­tant des patients, y com­pris ceux ayant les tumeurs les plus fré­quentes du poumon, de la pros­tate, du colo­rec­tum et du sein, les trai­te­ment médi­ca­men­teux ont aug­menté la survie à cinq ans de moins de 2,5%, soit un béné­fice global de survie d’en­vi­ron trois mois.
De manière simi­laire, 14 nou­veaux régimes thé­ra­peu­tiques consé­cu­tifs pour les can­cers solides adultes approu­vés par l’Agence Européenne des Médicaments ont abouti à un béné­fice global moyen de survie de 1,2 mois par rap­port aux régimes qui leur étaient com­pa­rés.
Les nou­veaux médi­ca­ments n’ont pas été meilleurs : 48 nou­veaux régimes approu­vés par la Food and Drug Administration entre 2002 et 2014 offraient une médiane de 2,1 mois de béné­fice de survie glo­bale.
Le trai­te­ment médi­ca­men­teux ne peut donc que par­tiel­le­ment expli­quer l’a­mé­lio­ra­tion de 20% dans la survie de cinq ans men­tion­nés ci-dessus. L’évolution du diag­nos­tic et du trai­te­ment pré­coces peut y avoir contri­bué beau­coup plus.

Les tra­vaux de Blasco MT et al. (2019N106, voir com­men­taire en fran­çais : N107) en expé­ri­men­ta­tion ani­male ouvrent une piste pro­met­teuse pour la gué­ri­son de l’adé­no­car­ci­nome du pan­créas, une forme par­ti­cu­liè­re­ment agres­sive de cancer qui a touché plus de 14000 per­sonnes en 2017 en France.

À signa­ler aussi — et la liste est loin d’être com­plète — la radio-immunothérapieN108 étu­diée au Centre de Recherche en Cancérologie et Immunologie de Nantes-Angers (ARC, 2018N109) :

Le prin­cipe géné­ral de la radio-immunothérapie est d’associer une molé­cule radio­ac­tive à un anti­corps qui, une fois injecté au patient, se fixe sur une pro­téine spé­ci­fi­que­ment expo­sée à la sur­face des cel­lules can­cé­reuses. Les anti­corps qui ne ren­contrent pas leur cible sont pro­gres­si­ve­ment éli­mi­nés par l’organisme et la radio­ac­ti­vité se concentre ainsi au niveau des cel­lules tumo­rales, ainsi expo­sées à l’irradiation. Cette tech­nique, déjà vali­dée en seconde ligne dans la prise en charge de lym­phomes non-hodgkiniens, a comme prin­ci­pal avan­tage de tou­cher poten­tiel­le­ment toutes les cel­lules can­cé­reuses, y com­pris celles qui ne sont pas loca­li­sées au niveau de la tumeur pri­maire : contrai­re­ment à l’irradiation locale d’une radio­thé­ra­pie clas­sique, la radio-immunothérapie permet d’exposer les cel­lules tumo­rales qui cir­culent dans le sang ou les micro-métastases, invi­sibles à l’imagerie.

Selon François Davodeau, « Cette tech­nique pour­rait donc offrir la pos­si­bi­lité de détruire la tumeur mais aussi les méta­stases, y com­pris celles que l’on n’a pas encore déce­lées, ainsi que les cel­lules tumo­rales qui peuvent demeu­rer à la suite d’une chi­rur­gie d’exérèse1 de la tumeur, res­pon­sables de la réci­dive du cancer. »

À l’Université de Cardiff, une équipe a publié une étude décou­vrant la décou­verte d’une cel­lule immu­ni­taite capable de s’at­ta­quer à tous les types de cancer (Crowther MD et al, 2020N110) :

Le ciblage des cel­lules can­cé­reuses induit par les cel­lules T et indé­pen­dant de l’an­ti­gène leu­co­cy­taire humain (HLA) per­met­trait la des­truc­tion immu­ni­taire des tumeurs malignes chez tous les indi­vi­dus. Ici, nous uti­li­sons le cri­blage CRISPR-Cas9 [N111] à l’é­chelle du génome pour éta­blir qu’un récep­teur des cel­lules T (TCR) a reconnu et tué la plu­part des types de cancer humain via la pro­téine mono­morphe liée au CMH de classe I, MR1, tout en res­tant inerte vis-à-vis des cel­lules non can­cé­reuses. Contrairement aux cel­lules T inva­riantes asso­ciées aux muqueuses, la recon­nais­sance des cel­lules cibles par le TCR était indé­pen­dante de la charge bac­té­rienne. De plus, l’a­jout en fonc­tion de la concen­tra­tion des ligands méta­bo­lites liés à la vita­mine B de MR1 a réduit la recon­nais­sance TCR des cel­lules can­cé­reuses, ce qui sug­gère que la recon­nais­sance s’est pro­duite via la détec­tion du méta­bo­lome [N112] du cancer. Un clone de cel­lules T res­treint par MR1 a induit une régres­sion in vivo de la leu­cé­mie et a conféré une survie accrue des souris NSG. Le trans­fert de TCR aux cel­lules T des patients a permis de tuer le méla­nome auto­logue et non auto­logue. Ces résul­tats ouvrent des pers­pec­tives aux immu­no­thé­ra­pies indé­pen­dantes du HLA, pan-cancéreuses et pan-populationnelles.

L’accès rapide aux nou­veaux trai­te­ments n’est pas tou­jours un béné­fice pour les patients. La publi­ca­tion en 2019 de don­nées alle­mandes sur les médi­ca­ments mis sur le marché a montré moins de 25 % des anti­can­cé­reux avaient des effets sur la survie glo­bale (Maisonneuve H, 2019N113).

Toxines de Coley : un ancêtre de l’immunothérapie ?

L’histoire du trai­te­ment par les toxines de ColeyN114 est ins­truc­tive. Non qu’il s’a­gisse d’un nou­veau trai­te­ment, puis­qu’il a été inventé à la fin du 19e siècle, mais parce qu’elle illustre les aléas de la recherche médi­cale.

Ce trai­te­ment consis­tait à injec­ter au patient un mélange de bac­té­ries tuées par la cha­leur afin de sti­mu­ler leurs « défenses natu­relles »N114. Chirurgien, William ColeyN115 avait eu cette idée en remar­quant que des patients qui avaient une infec­tion cuta­née après avoir été opérés d’un cancer voyaient par­fois leur cancer régres­ser.

Matthew Tontonoz (2015N116) raconte que ce trai­te­ment avait montré son effi­ca­cité sur plus de 2000 cas à une époque pré­cé­dant la décou­verte des rayons X en 1895 et leur uti­li­sa­tion pour le trai­te­ment des can­cers, rem­pla­cée peu après par le trai­te­ment au radium. Contrairement aux toxines de Coley, la radio­thé­ra­pie affi­chait des résul­tats clairs et cohé­rents chez presque tous les patientsN116. D’autre part, le méca­nisme du trai­te­ment de Coley n’é­tait pas connu. Après le décès de Coley, sa fille Helen Coley Nauts, qui n’a­vait aucune for­ma­tion scien­ti­fique, a incité des scien­ti­fiques à pour­suivre leurs recherches sur ce trai­te­ment. Elle avait pour cela com­pilé les notes de son père et entre­te­nait une abon­dante cor­res­pon­dance avec les cher­cheurs de l’é­poque qui com­men­çaient à tra­vailler sur la chi­mio­thé­ra­pie. Mais elle fai­sait aussi preuve d’un enthou­siasme débor­dant, entre autres dans ses échanges avec Cornelius Rhoads qui était une som­mité de la recherche médi­cale. Après un sou­tien ini­tial, ce der­nier a fini par chan­ger son fusil d’é­paule, expri­mant des réserves sur la vali­dité des tra­vaux de Coley.

À la fin de la guerre, en 1945, quand Helene Nauts l’a recon­tacté sans succès pour deman­der un finan­ce­ment et même un emploi dans l’é­quipe hos­pi­ta­lière qui effec­tue­rait les tra­vaux. Malgré (et à cause de) son insis­tance, elle a reçu de Rhoads, en 1950, une der­nière réponse l’in­for­mant que toute son équipe était enga­gée sur la voie de la recherche en chi­mio­thé­ra­pie. Refusant d’a­ban­don­ner le projet malgré cet échec, elle a créé le Cancer Research Institute (CRI) en 1953. Elle a appris quelques années plus tard que Cornelius Rhoads était inter­venu en cou­lisses pour l’empêcher d’ob­te­nir un finan­ce­ment de John D. Rockefeller Jr. qui avait été un ami de son père. Rhoads a même ordonné en 1955 la fer­me­ture du labo­ra­toire qui fabri­quait le trai­te­ment de Coley.

Aujourd’hui, on consi­dère que le trai­te­ment par les toxines de Coley serait « à l’o­ri­gine de l’im­mu­no­thé­ra­pie » et que son inven­teur était « en avance sur son temps ». Mais, faute d’ex­pli­ca­tion sur son fonc­tion­ne­ment, cette thé­ra­pie avait été clas­sée par l’American Cancer Society parmi les « thé­ra­pies du cancer non prou­vées », sans réfu­ter l’in­té­rêt de nou­velles recherches. Un autre obs­tacle est apparu avec le Drug Efficacy Amendment passé par le Congrès amé­ri­cain en 1962, qui obli­geait tout médi­ca­ment à prou­ver son effi­ca­cité pour âtre auto­risé par la Food and Drug Administration. Le trai­te­ment de William Coley n’a pas béné­fi­cié, en dépit de son ancien­neté, de la même déro­ga­tion que d’autres médi­ca­ments « non prou­vés » comme l’as­pi­rine. La preuve de l’ef­fi­ca­cité dans les règles de l’art est coû­teuse et dif­fi­cile, d’au­tant plus que les toxines de Coley sont pré­pa­rées par le biais de bac­té­ries dont les noms sont iden­ti­fiés mais qui peuvent prendre de mul­tiples formes. En 1976 un essai cli­nique a été inter­rompu malgré un effet pro­met­teur sur le lym­phome de Hodgkin parce que les sta­tis­tiques de survie conver­geaient sur le long terme. Aucun trai­te­ment simi­laire n’a passé le cap de la vali­da­tion.

Ce sont les pre­miers tra­vaux en immu­no­lo­gie du cancer, dans les années 1970, qui ont donné une impul­sion nou­velle à la recherche sur les toxines de Coley en se foca­li­sant sur le méca­nisme du trai­te­ment. Tontonoz (2015N116) écrit :

Enfin, le moment sem­blait venu de revoir les toxines de Coley, avec une com­pré­hen­sion plus pro­fonde du fonc­tion­ne­ment du sys­tème immu­ni­taire. En 2007, le CRI a financé un essai cli­nique de phase I sur les toxines de Coley chez des patients atteints de divers types de cancer. L’essai a été réa­lisé à l’hôpital Krankenhaus Nordwest de Francfort, en Allemagne, sous la direc­tion de Elke Jäger, M.D., membre du réseau d’essais cli­niques du CRI. Les patients rece­vaient des injec­tions sous-cutanées de toxines de Coley deux fois par semaine jusqu’à ce que la fièvre s’induise, puis quatre doses sup­plé­men­taires.

Contrairement aux pré­cé­dents essais cli­niques sur les toxines, celui-ci a été mené avec des toxines fabri­quées confor­mé­ment aux direc­tives de bonne pra­tique cli­nique (GCP), avec des com­po­sants bac­té­riens nor­ma­li­sés. L’essai incluait éga­le­ment des mesures de labo­ra­toire des réponses immu­ni­taires, par exemple des taux san­guins de cyto­kines, qui n’é­taient pas pos­sibles aupa­ra­vant, et ciblait spé­ci­fi­que­ment les patients dont les can­cers expri­maient le dra­peau molé­cu­laire spé­ci­fique appelé NY-ESO‑1.

Comme toutes les études de phase I, l’objectif prin­ci­pal de cette étude n’était pas de déter­mi­ner l’efficacité cli­nique, mais d’en déter­mi­ner la sécu­rité et d’é­va­luer la poso­lo­gie opti­male. Néanmoins, il y a eu des résul­tats très pro­met­teurs. Les toxines ont été effi­caces pour induire de la fièvre et de fortes pous­sées de cyto­kines. Un patient atteint d’un cancer de la vessie méta­sta­tique a eu une réponse cli­nique claire au trai­te­ment, avec une réduc­tion de 50% de son cancer qui était cor­ré­lée à des taux élevés de cyto­kines.

Toutefois, ce genre d’é­tude n’a pas pu être repris, à la fois par manque de finan­ce­ment et en raison des contraintes nou­velles impo­sées par les comi­tés d’é­thique de la recherche cli­nique mis en œuvre dans les hôpi­taux. Entre autres, la preuve de l’ef­fi­ca­cité des toxines de Coley était une élé­va­tion de tem­pé­ra­ture chez les patients qui pou­vait lais­ser croire à une dété­rio­ra­tion de leur état, et pen­dant l’es­sai cette fièvre pou­vait per­sis­ter pen­dant des semaines ou des mois à mesure que les doses étaient aug­men­tées.

Il est pos­sible que les nou­veaux trai­te­ments en immu­no­thé­ra­pie aient dépassé et rendu obso­lète l’ap­proche de William Coley. Matthew Tontonoz (2015N116) conclut :

Coley avait lui-même constaté que les toxines étaient plus effi­caces pour pré­ve­nir les réci­dives lors­qu’elles étaient admi­nis­trées après une inter­ven­tion chi­rur­gi­cale. Cela reflète les approches actuelles d’im­mu­no­thé­ra­pie asso­ciant chi­rur­gie et vac­cins anti­can­cé­reux.

Cellules souches

Une thé­ra­pie nou­velle a été annon­cée en 2012 avec un forte média­ti­sa­tion en Italie. Elle consis­te­rait à extraire des cel­lules souches de la moelle épi­nière du patient puis à les « trai­ter » afin qu’elles se dif­fé­ren­cient en cel­lules ner­veuses. (Sans inter­ven­tion, ces cel­lules souches ne peuvent se dif­fé­ren­cier qu’en cel­lules osseuses, grais­seuses ou car­ti­la­gi­neuses.) Réinjectées dans l’or­ga­nisme elles per­met­traient sa gué­ri­son.

Cette méthode StaminaN117 est issue d’un labo­ra­toire de Brescia dirigé par Davide Vannoni, ancien pro­fes­seur de psy­cho­lo­gie de l’Université d’Udine devenu homme d’af­faires. Aucune preuve scien­ti­fique de sa fai­sa­bi­lité, de son effi­ca­cité et de son inno­cuité n’a été publiée. La revue Nature a révélé qu’une micro­gra­phie essen­tielle dans la demande de brevet, décri­vant deux cel­lules ner­veuses appa­rem­ment dif­fé­ren­ciées des cel­lules stro­males de la moelle osseuse, avait été copiée d’un docu­ment de recherche publié en 2003 par une équipe russe et ukrai­nienneN118 — ce qui a été confirmé par Elena Schegelskaya, une co-auteure du docu­ment plagié.

En 2015, Vannoni a été reconnu cou­pable d’ac­cu­sa­tions cri­mi­nelles liées à l’ad­mi­nis­tra­tion d’un trai­te­ment non prouvé et inter­dit d’exer­cer une pro­fes­sion médi­cale en Italie.

Les publi­ca­tions frau­du­leuses annon­çant le succès de nou­veaux médi­ca­ments contre le cancer sont nom­breuses (voir par exempleN119) étant donné l’im­pact médiatique/économique de ces annonces et leurs retom­bées en termes d’a­van­ce­ment de car­rière.

Thérapie génique

Le fait que le projet TCGA n’ait pas (sauf rares excep­tions) comblé l’es­poir d’i­den­ti­fier — et par la suite modi­fier — des sché­mas inva­riants de muta­tions géné­tiques carac­té­ri­sant les diverses formes de cancer, ne signi­fie pas pour autant qu’au­cune thé­ra­pie géniqueN120 ne pour­rait pro­duire de résul­tat.

On écou­tera avec beau­coup d’in­té­rêt un entre­tien avec Alain FischerN121, cher­cheur en bio­lo­gie à l’hô­pi­tal Necker (Paris), dont l’é­quipe a mis au point, dans les années 2000, un trai­te­ment génique des enfants-bullesN122 atteints d’immunodéficience sévère (émis­sion Révolutions médi­cales, 26/01/2016N123). La thé­ra­pie consis­tait à inter­ve­nir sur un gène sujet à une muta­tion indé­si­rable qui empê­chait la pro­duc­tion de lym­pho­cytes TN124 dans l’or­ga­nisme, pri­vant l’or­ga­nisme de ces enfants de l’es­sen­tiel de leurs défenses immu­ni­taires (Cavazzana-Calvo M et al., 2000N125). Pour cela, on a trans­féré dans leurs cel­lules san­guines, par le biais d’un rétro­vi­rus, un gène fonc­tion­nel res­tau­rant la fonc­tion­na­lité du récep­teur à l’inter­leu­kine 2N126.

Malgré un grave effet secon­daire — le déclen­che­ment, chez cer­tains patients, de leu­cé­mies induites par l’ac­ti­va­tion indé­si­rée d’onco­gènesN23 — la tech­nique a pu être cor­ri­gée pour donner satis­fac­tion en mini­mi­sant les risques. Elle a été appli­quée avec succès sur quelques patients atteints de mala­dies rares, notam­ment pour le trai­te­ment de lym­phome (N127 cancer des nœuds lym­pha­tiques) par le trans­fert de gènes codants pour des molé­cules arti­fi­cielles capables de redi­ri­ger des lym­pho­cytes TN124 à l’en­contre des cel­lules leu­cé­miques (WikipediaN120).

On peut donc s’at­tendre à quelques avan­cées dans le domaine du cancer, non pas pour inter­ve­nir sur des muta­tions qui dans la majo­rité des cas, nous l’a­vons vu, sont trop com­plexes et impré­vi­sibles, mais plutôt pour modi­fier le code géné­tique de cel­lules uti­li­sées par le sys­tème immu­ni­taire en vue de les pro­gram­mer à la des­truc­tion de cel­lules malignes, ou encore de lever les obs­tacles chi­miques qui empêchent les lym­pho­cytes d’at­ta­quer les cel­lules can­cé­reuses. Cette der­nière approche très pro­met­teuse a été pré­sen­tée par Caroline Robert et Éric Vivier dans une émis­sion de la série Matières à penser (février 2019N128). Une des dif­fi­cul­tés de l’im­mu­no­thé­ra­pie est le coup très élevé du trai­te­ment — envi­ron 80 000 euros selon les inter­ve­nants de cette émis­sion — et l’in­cer­ti­tude encore très grande de son effi­ca­cité pour un patient en par­ti­cu­lier.

Chronothérapie

L’équipe U935 de l’INSERMN129 s’in­té­resse à l’op­ti­ma­li­sa­tion de la chro­no­thé­ra­pieN130 des can­cers et de la fonc­tion hépa­tique post-opératoire. Cette branche de la chro­no­bio­lo­gieN131 a pour but de syn­chro­ni­ser les rythmes cir­ca­diens et de les uti­li­ser à des fins thé­ra­peu­tiques. Annabelle Ballesta, char­gée de la modé­li­sa­tion mathé­ma­tique dans le cadre de l’é­quipe ATIP Avenir, écritN132 :

Je déve­loppe des modèles mathé­ma­tiques fondés sur la phy­sio­lo­gie cel­lu­laire : les don­nées de la lit­té­ra­ture et les tra­vaux spé­ci­fiques conduits pour l’occasion dans le domaine de la chro­no­bio­lo­gie per­mettent de créer un modèle vir­tuel cel­lu­laire, animal, puis humain qui vise à repro­duire in silico ce qui se passe bio­lo­gi­que­ment. Les para­mètres que nous y inté­grons sont ajus­tés aux don­nées bio­lo­giques pour assu­rer la vali­dité du modèle. Une fois opti­mi­sés, ils per­mettent de modé­li­ser l’impact d’un trai­te­ment selon le moment de la jour­née auquel il est admi­nis­tré. Ces modèles intègrent des réseaux de gènes ou de pro­téines qui sont décrits comme inter­agis­sant avec les médi­ca­ments étu­diés, comme par exemple ceux qui régissent les pro­ces­sus de répa­ra­tion de l’ADN, le cycle cel­lu­laire ou la mort cel­lu­laire… L’apport des mathé­ma­tiques est de réduire le nombre d’expériences à mener en tes­tant in silico un grand nombre d’hypothèses et en ne tes­tant expé­ri­men­ta­le­ment que celles qui s’avèrent per­ti­nentes pour déve­lop­per les connais­sances bio­lo­giques.

[…]

Grâce à ce pro­gramme, nous menons de front deux pro­jets : le pre­mier consiste à étu­dier la façon dont la chro­no­phar­ma­co­lo­gie de trois médi­ca­ments pres­crits dans les can­cers diges­tifs est influen­cée par des fac­teurs comme l’âge, le sexe ou encore le chro­no­type des per­sonnes — lève-tôt ou couche-tard. Le second vise à déve­lop­per des stra­té­gies per­son­na­li­sées à partir de com­bi­nai­sons de médi­ca­ments dits « ciblés », qui n’interagissent qu’avec une ou deux pro­téines intra­cel­lu­laires, afin d’améliorer l’efficacité anti­tu­mo­rale du trai­te­ment. Ces deux thé­ma­tiques se rejoignent dans leur fina­lité : indi­vi­dua­li­ser les trai­te­ments selon la nature de la tumeur mais aussi selon le patient lui-même.

(Suite sur la page Cancer - dépistage)

➡ Les réfé­rences biblio­gra­phiques com­plètes sont sur la page Cancer - conclusion et références.

➡ Le contenu de cet article ne se sub­sti­tue pas aux recom­man­da­tions des pro­fes­sion­nels de santé consul­tés par les lec­teurs.

▷ Liens

🔵 Notes pour la ver­sion papier :
- Les iden­ti­fiants de liens per­mettent d’atteindre faci­le­ment les pages web aux­quelles ils font réfé­rence.
- Pour visi­ter « 0bim », entrer dans un navi­ga­teur l’adresse « https://​leti​.lt/0bim ».
- On peut aussi consul­ter le ser­veur de liens https://​leti​.lt/​l​i​ens et la liste des pages cibles https://​leti​.lt/​l​i​ste.

  • N1 · 52rn · James Dewey Watson – Wikipedia
  • N2 · g4m1 · Rosalind Franklin – Wikipedia
  • N3 · v7fv · Watson, James (2014). Type 2 dia­betes as a redox disease. The Lancet, 383, 9919 : 841–843.
  • N4 · jdt9 · Dérivé réac­tif de l’oxy­gène (ROS) – Wikipedia
  • N5 · w6ci · Entraînement frac­tionné de haute inten­sité – HIIT – Wikipedia
  • N6 · rvln · Nobelist James Watson pro­poses an uncon­ven­tio­nal view of type 2 dia­betes cau­sa­tion
  • N7 · zofl · Pancréas – Wikipedia
  • N8 · a3u9 · Diabète de type 2 – Wikipedia
  • N9 · 8s1z · Antioxydants – Renaud Roussel
  • N10 · 8zhv · Réticulum endo­plas­mique – Wikipedia
  • N11 · ab2l · Pont disul­fure – Wikipedia
  • N12 · b8o4 · Repliement des pro­téines – Wikipedia
  • N13 · kcld · Ristow, A et al. (2009). Antioxidants prevent health-promoting effects of phy­si­cal exer­cise in humans. PNAS, 106, 21 : 8665–8670.
  • N14 · 81fq · Hormèse – Wikipedia
  • N15 · skr4 · Ristow M, Schmeisser K (2014). Mitohormesis : Promoting Health and Lifespan by Increased Levels of Reactive Oxygen Species (ROS). Dose Response. 12, 2:288–341. doi:10.2203/dose-response.13–035
  • N16 · jvwz · Watson, James (2013). Oxidants, antioxi­dants and the cur­rent incu­ra­bi­lity of metas­ta­tic can­cers. Open Biol 3 : 120144.
  • N17 · 6qeo · Adénosine tri­phos­phate (ATP) – Wikipedia
  • N18 · gt0v · Carcinome – Wikipedia
  • N19 · apqt · Transition épithélio-mésenchymateuse – Wikipedia
  • N20 · 0ubw · Métastase – Wikipedia
  • N21 · e3yx · Apoptose – Wikipedia
  • N22 · vczo · Acétylcystéine – Wikipedia
  • N23 · 12ty · Oncogène – Wikipedia
  • N24 · dc13 · Glutathion – Wikipedia
  • N25 · 9uvt · Superoxyde dis­mu­tase – Wikipedia
  • N26 · 34fv · Catalase – Wikipedia
  • N27 · xuml · Thiorédoxine – Wikipedia
  • N28 · q81n · NFE2L2 – Nrf2 – Wikipedia
  • N29 · odmk · IGF‑1 – Wikipedia
  • N30 · ot3s · Velloso CP (2008). Regulation of muscle mass by growth hor­mone and IGF‑I. Br J Pharmacol. 154, 3 : 557–568. doi:10.1038/bjp.2008.153
  • N31 · 8it2 · James Watson : Basing ‘war on cancer’ on genome research diverts resources
  • N32 · 8i3j · Interférence par ARN – Wikipedia
  • N33 · 5fyj · Kaelin G (2012). Use and Abuse of RNAi to Study Mammalian Gene Function. Science, 337, 6093 : 421–422. doi:10.1126/science.1225787
  • N34 · jylh · Cold Spring Harbor Laboratory
  • N35 · rh42 · Watson, James (2009). To Fight Cancer, Know the Enemy. The Opinion Pages, The New York Times, Aug. 5.
  • N36 · e5j3 · AGIOS com­pany
  • N37 · rtjb · Christofferson, T (2014). Tripping Over the Truth : The Return of the Metabolic Theory of Cancer Illuminates a New and Hopeful Path to a Cure. Auto-édition, CreateSpace.
  • N38 · 16ls · Warburg hypo­the­sis – Wikipedia
  • N39 · naqt · Émission de radio “Rosalind Franklin, à 2 brins du Nobel” – France Culture
  • N40 · juu7 · Hanahan D & Weinberg RA (2000). The Hallmarks of Cancer. Cell, 100, 1 : 57–70.
  • N41 · gvbs · Angiogenèse – Wikipedia
  • N42 · 7yxa · Peter L. Pedersen, Ph.D.
  • N43 · ll1a · Pedersen, Peter (2009). NCI and NIH Mitochondria Interest Group Seminar : Johns Hopkins’ Pedersen Addresses Role of Mitochondria in Cancer.
  • N44 · mo8r · Warburg effect – Wikipedia
  • N45 · eu51 · Hanahan D & Weinberg RA (2011). Hallmarks of cancer : the next gene­ra­tion. Cell. 2011, 144, 5 : 646–74.
  • N46 · 6d8h · The hall­marks of cancer – Wikipedia
  • N47 · alc0 · Mitochondrie – Wikipedia
  • N48 · 66ps · Thomas N. Seyfried – author
  • N49 · p5f7 · Thomas N. Seyfried – Academic Profile
  • N50 · ygyn · McKinnell RG, Deggins BA, Labat DD. (1969). Transplantation of plu­ri­po­ten­tial nuclei from tri­ploid frog tumors. Science. 165, 3891 : 394–6.
  • N51 · vbou · Seyfried, TN (2015a). Cancer as a mito­chon­drial meta­bo­lic disease. Front Cell Dev Biol. 2015, 3 : 43.
  • N52 · vatn · Seyfried, TN (2015b). Cancer : A Metabolic Disease With Metabolic Solutions. Institute for Human & Machine Cognition (IHMC). Youtube video.
  • N53 · cz64 · O’Neill, Michael (2013). Review of “Cancer as a Metabolic Disease – Thomas Seyfried” – Update on metas­ta­sis. June 30. Blog article.
  • N54 · 60vw · Macrophage – Wikipedia
  • N55 · v36u · Leucocyte – Wikipedia
  • N56 · afw2 · Cellule soma­tique – Wikipedia
  • N57 · yy3w · Lazova, R et al. (2013). A Melanoma Brain Metastasis with a Donor-Patient Hybrid Genome fol­lo­wing Bone Marrow Transplantation : First Evidence for Fusion in Human Cancer. PLoS ONE 8, 6 : e66731.
  • N58 · pkyk · Cancer Scientists Prove Long-Standing Theory on How Cancer Spreads
  • N59 · 3ovr · Pawelek, John (2014). Fusion of bone marrow-derived cells with cancer cells : metas­ta­sis as a secon­dary disease in cancer. Chin J Cancer. 2014, 33, 3 : 133–139.
  • N60 · uyyz · Strongman, H et al. (2019). Medium and long-term risks of spe­ci­fic car­dio­vas­cu­lar diseases in sur­vi­vors of 20 adult can­cers : a population-based cohort study using mul­tiple linked UK elec­tro­nic health records data­bases. The Lancet (on line). doi:10.1016/S0140-6736(19)31674–5
  • N61 · q2gz · 2,6 mil­lions de morts évités en 25 ans : inci­dence et mor­ta­lité par cancer en baisse aux États-Unis
  • N62 · 4awr · Understanding sur­vi­val ana­ly­sis : Kaplan-Meier esti­mate
  • N63 · lqsm · Stupp, R et al. (2009). Effects of radio­the­rapy with conco­mi­tant and adju­vant temo­zo­lo­mide versus radio­the­rapy alone on sur­vi­val in glio­blas­toma in a ran­do­mi­sed phase III study : 5‑year ana­ly­sis of the EORTC-NCIC trial. Lancet 10, 5 : 459–466.
  • N64 · 6831 · Glioblastome mul­ti­forme – Wikipedia
  • N65 · br8t · Témozolomide – Wikipedia
  • N66 · h9h8 · Cost of temo­zo­lo­mide the­rapy and global care for recur­rent mali­gnant glio­mas fol­lo­wed until death
  • N67 · t15x · Johnson, BE et al. (2014). Mutational ana­ly­sis reveals the origin and therapy-driven evo­lu­tion of recur­rent glioma. Science, 343, 6167 : 189–93.
  • N68 · jfa4 · Trastuzumab – Herceptine – Wikipedia
  • N69 · cy9g · Genentech Company – Wikipedia
  • N70 · xstp · Yin, Sandra (2011). Experts Question Benefits of High-Cost Cancer Care. Medscape, 5 décembre 2011.
  • N71 · lik9 · Bévacizumab – Wikipedia
  • N72 · t26p · Paclitaxel – Wikipedia
  • N73 · mlqb · Rofécoxib – Vioxx – Wikipedia
  • N74 · 6e45 · Merck débourse près d’un mil­liard de dol­lars pour solder le scan­dale Vioxx
  • N75 · m1yb · Cancer du pan­créas : un nou­veau trai­te­ment pour soi­gner la mala­die en 14 jours
  • N76 · 62kq · Imatinib – Wikipedia
  • N77 · tjwx · Leucémie myé­loïde chro­nique – Wikipedia
  • N78 · exfe · Pray, L. (2008). Gleevec : the Breakthrough in Cancer Treatment. Nature Education 1(1):37
  • N79 · 2icq · Seyfried, TN (2014). Ketone Strong : Emerging evi­dence for a the­ra­peu­tic role of ketone bodies in neu­ro­lo­gi­cal and neu­ro­de­ge­ne­ra­tive diseases. The Journal of Lipid Research, 55, 1815–1817.
  • N80 · zf00 · Breast Cancer Cancer / Oncology One Year On Herceptin For Breast Cancer Ideal
  • N81 · pg9k · Pedersen, Peter L. (2012). 3‑Bromopyruvate (3BP) a fast acting, pro­mi­sing, power­ful, spe­ci­fic, and effec­tive “small mole­cule” anti-cancer agent taken from lab­side to bed­side : intro­duc­tion to a spe­cial issue. J Bioenerg Biomembr. 2012, 44, 1 : 1–6.
  • N82 · ki1i · Valenti, D et al. (2015). 3‑Bromopyruvate induces rapid human pros­tate cancer cell death by affec­ting cell energy meta­bo­lism, GSH pool and the glyoxa­lase system. J Bioenerg Biomembr. 2015, 47, 6 : 493–506.
  • N83 · vrtp · Mucoviscidose – Wikipedia
  • N84 · je9y · Hexokinase – Wikipedia
  • N85 · gtrh · Mathupala, SP, Ko, YH, Pedersen, PL (2006). Hexokinase II : Cancer’s double-edged sword acting as both faci­li­ta­tor and gate­kee­per of mali­gnancy when bound to mito­chon­dria. Oncogene,25, 34 : 4777–4786.
  • N86 · qwnq · Monocarboxylate trans­por­ter – Wikipedia
  • N87 · e87p · Acide pyru­vique – Wikipedia
  • N88 · d4jh · PreScience Labs
  • N89 · j8vp · Case 1:05-cv-01475-WDQ Document 24 Filed 06/24/05 – PDF
  • N90 · yked · Carcinome hépa­to­cel­lu­laire – Wikipedia
  • N91 · juhz · Ko YH, Verhoeven HA, Lee MJ, Corbin DJ, Vogl TJ, Pedersen PL (2012). A trans­la­tio­nal study “case report” on the small mole­cule “energy blo­cker” 3‑bromopyruvate (3BP) as a potent anti­can­cer agent : from bench side to bed­side. J Bioenerg Biomembr. 44, 1 : 163–70.
  • N92 · uana · El Sayed, SM et al. (2014). Safety and out­come of treat­ment of metas­ta­tic mela­noma using 3‑bromopyruvate : a concise lite­ra­ture review and case study. Chin J Cancer. 2014, 33, 7 : 356–64.
  • N93 · es2a · U.S. Food and Drug Administration
  • N94 · wx61 · PreScience Labs Announced that the FDA Accepts IND Application for Novel Oncology Drug
  • N95 · tlfr · Toxicité des trai­te­ments anti-cancéreux
  • N96 · nrgd · Exanthème – Wikipedia
  • N97 · bdeo · Paronychie
  • N98 · vz9s · Xérose – Wikipedia
  • N99 · tiuh · Pulpite – Wikipedia
  • N100 · swh1 · Folliculite – Wikipedia
  • N101 · 0jul · Kératose pilaire – Wikipedia
  • N102 · z5u6 · Nitrobenzaldéhyde – Wikipedia
  • N103 · hmcy · Kadri, Nuha Buchanan et al. (2016). Photodynamic aci­di­fi­ca­tion the­rapy to reduce triple nega­tive breast cancer growth in vivo. Journal of Clinical Oncology, Vol 34, No 15_suppl (May 20 Supplement): e12574.
  • N104 · 6krq · University of Texas at San Antonio (2016). New, non-invasive method deve­lo­ped to wipe out can­ce­rous tumors : New treat­ment, requi­ring only a single dose and a beam of light, can kill up to 95 percent of cancer cells in two hours. ScienceDaily. ScienceDaily, 27 June.
  • N105 · vscn · Wise, Peter (2016). Cancer drugs, sur­vi­val, and ethics. BMJ 2016;355:i5792.
  • N106 · sfm0 · Blasco, MT et al. (2019). Complete Regression of Advanced Pancreatic Ductal Adenocarcinomas upon Combined Inhibition of EGFR and C‑RAF. Cancer Cell, 35, 4 : 573–587. doi:10.1016/j.ccell.2019.03.002.
  • N107 · f1ci · Cancer du pan­créas : pre­mier pas vers un trai­te­ment ?
  • N108 · l9r9 · Radioimmunotherapy – Wikipedia
  • N109 · s44l · ARC (2018). Cancers du sein triple-négatifs : les pré­mices d’une nou­velle stra­té­gie. Communiqué, 19 juin.
  • N110 · dkfu · Genome-wide CRISPR–Cas9 scree­ning reveals ubi­qui­tous T cell cancer tar­ge­ting via the mono­mor­phic MHC class I‑related pro­tein MR1
  • N111 · 5lkt · CRISPR-Cas9 – Wikipedia
  • N112 · rkur · Métabolome – Wikipedia
  • N113 · bz5d · Maisonneuve, H (2019). Les dys­fonc­tion­ne­ments de la mise sur le marché des anti­can­cé­reux : l’ac­cès rapide n’est pas un béné­fice pour les patients. Blog Rédaction Médicale et Scientifique.
  • N114 · 0o2s · Coley’s toxins – Wikipedia
  • N115 · or28 · William Coley – Wikipedia
  • N116 · 21n3 · Tontonoz, M (2015). What Ever Happened to Coley’s Toxins ? Article du site Cancer Research Institute (www​.can​cer​re​search​.org).
  • N117 · da07 · Méthode Stamina – Wikipedia
  • N118 · xqyz · Italian stem-cell trial based on flawed data
  • N119 · 16uk · The wizard men curing breast cancer
  • N120 · 2i8k · Thérapie génique – Wikipedia
  • N121 · k5yf · Alain Fischer – Wikipedia
  • N122 · 56e4 · Enfant-bulle – Wikipedia
  • N123 · odvh · La thé­ra­pie génique sort-elle de la méde­cine expé­ri­men­tale ?
  • N124 · ee2n · Lymphocyte T – Wikipedia
  • N125 · y60g · Cavazzana-Calvo, M et al. (2000). Gene Therapy of Human Severe Combined Immunodeficiency (SCID)-X1 Disease. Science, 288, 5466 : 669–672. doi:10.1126/science.288.5466.669
  • N126 · wf2x · Interleukine 2 – Wikipedia
  • N127 · qr1t · Lymphome – Wikipedia
  • N128 · iv2n · L’immunothérapie du cancer – Émission Matières à penser, France Culture
  • N129 · uo7e · INSERM U935 – Optimisation de la Chronothérapie des Cancers et de la Fonction Hépatique Post-opératoire
  • N130 · r2zq · Chronothérapie – Wikipedia
  • N131 · xodx · Chronobiologie – Wikipedia
  • N132 · 7qwz · Annabelle Ballesta : Individualiser les trai­te­ments grâce aux maths et à la chro­no­bio­lo­gie

Article créé le 20/11/2018 - modifié le 14/05/2020 à 11h49

47 recommended
0 commentaires
1033 visites
bookmark icon

Écrire un commentaire...

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur comment les données de vos commentaires sont utilisées.